Need help? We're here to assist you!

Book For Free Trial Of Study App & Counselling

Thank You for Enquiry, we will contact you soon!

Close
Home Revise
☰
Home Revise
✖
  • HOME
  • DEMO VIDEOS
  • BOOK A FREE COUNSELLING
  • +91 8080972972
Home Revise
  • HOME
  • DEMO VIDEOS
  • BOOK A FREE COUNSELLING
  • +91 8080972972

Home Revise | Maharashtra State Board Class 8 Maths Part 1 Chapter 5 Expansion Formulae

Maharashtra State Board Class 8 Maths Part 1 Chapter 5 Expansion Formulae

The Class 8 is an important year in a student’s life and Maharashtra State Board Maths is one of the subjects that require dedication, hard work, and practice. It’s a subject where you can score well if you are well-versed with the concepts, remember the important formulas and solving methods, and have done an ample amount of practice. Worry not! Home Revise is here to make your Class 8 journey even easier. It’s essential for students to have the right study material and notes to prepare for their board examinations, and through Home Revise, you can cover all the fundamental topics in the subject and the complete Maharashtra State Board Class 8 Maths Book syllabus.

NCERT Solutions for Class 10 Science CBSE

Access answers to Maharashtra Board Solutions For Class 8 Maths Part 1 Chapter 5- Expansion Formulae.

Practice set 5.1 PAGE NO: 24

1. Expand:

Maharashtra Board Solutions for Class 8 Maths Chapter 5 – image 1

Solution:

(1) (a + 2) (a – 1)

Let us simplify the expression, we get

(a + 2) (a – 1) = a2 + [(2) + (-1)] a + [(2) × (-1)]

By using the logic,

(x + p) (x + q) = x2 + (p + q)x +(p × q)

Here, x = a, p = 2, q = -1

Now, substitute the value we get

= a2 + (2 – 1)a + (-2)

= a2 + 2a – a – 2

= a2 + a – 2

∴ (a + 2) (a – 1) = a2 + a – 2

(2) (m – 4) (m + 6)

Let us simplify the expression, we get

(m – 4) (m + 6) = m2 + [(- 4) + (6)] m + [(- 4) × (6)]

By using the logic,

(x + p) (x + q) = x2 + (p + q)x + (p × q)

Here, x = m, p = -4, q = 6

Now, substitute the value we get

= m2 + (6 – 4)m + (- 24)

= m2 + 6m – 4m – 24

= m2 + 2m – 24

∴ (m – 4) (m + 6) = m2 + 2m – 24

(3) (p + 8) (p – 3)

Let us simplify the expression, we get

(p + 8) (p – 3) = p2 + [(8) + (- 3)] p + [(8) × (- 3)]

By using the logic,

(x + a) (x + b) = x2 + (a + b)x +(a × b)

Here, x = p, a = 8, b = -3

Now, substitute the value we get

= p2 + (8 – 3)p + (- 24)

= p2 + 8p – 3p – 24

= p2 + 5p – 24

∴ (p + 8) (p – 3) = p2 + 5p – 24

(4) (13 + x) (13 – x)

Let us simplify the expression, we get

(13 + x) (13 – x) = (13)2 – (x)2

{We know that (a + b) (a – b) = (a)2 – (b)2 }

= 169 + 0(13) – x2

= 169 – x2

∴ (13 + x) (13 – x) = 169 – x2

(5) (3x + 4y) (3x + 5y)

Let us simplify the expression, we get

(3x + 4y) (3x + 5y) = (3x)2 + [(4y) + (5y)] 3x + [(4y) × (5y)]

By using the logic,

(x + a) (x + b) = x2 + (a + b)x + (a × b)

Here, x = 3x, a = 4y, b = 5y

Now, substitute the value we get

= 9x2 + [(9y) × (3x)] + 20y2

= 9x2 + 27xy + 20y2

∴ (3x + 4y) (3x + 5y) = 9x2 + 27xy + 20y2

(6) (9x – 5t) (9x + 3t)

Let us simplify the expression, we get

(9x – 5t) (9x + 3t) = (9x)2 + [(- 5t) + (3t)] 9x + [(- 5t) × (3t)]

By using the logic,

(x + a) (x + b) = x2 + (a + b)x + (a × b)

Here, x = 9x, a = -5t, b = 3t

Now, substitute the value we get

= 81x2 + [(- 2t) × (9x)] + (- 15t2 )

= 81x2 – 18xt – 15t2

∴ (9x – 5t) (9x + 3t) = 81x2 – 18xt – 15t2

Maharashtra Board Solutions for Class 8 Maths Chapter 5 – image 2

Maharashtra Board Solutions for Class 8 Maths Chapter 5 – image 3

Maharashtra Board Solutions for Class 8 Maths Chapter 5 – image 4

Practice set 5.2 PAGE NO: 25

1. Expand:

Maharashtra Board Solutions for Class 8 Maths Chapter 5 – image 5

Solution:

(1) (k + 4)3

Let us simplify the expression, we get

(k + 4)3 = (k)3 + [ 3 ×(k)2 × (4)] + [ 3 × (k) × (4)2 ] + (4)3

By using the formula,

(a + b)3 = a3 + 3a2 b + 3ab2 + b3

Here a = k, b = 4

Now, substitute the value we get

= k3 + (3 × 4)k2 + (3 × 16)k + 64

= k3 + 12k2 + 48k + 64

∴ (k + 4)3 = k3 + 12k2 + 48k + 64

(2) (7x + 8y)3

Let us simplify the expression, we get

(7x + 8y)3 = (7x)3 + [ 3 × (7x)2 × (8y)] + [ 3 × (7x) × (8y)2 ] + (8y)3

By using the formula,

(a + b)3 = a3 + 3a2 b + 3ab2 + b3

Here a = 7x, b = 8y

Now, substitute the value we get

= 343x3 + (3 × 49 × 8)x2 y + (3 × 7 × 64)xy2 + 512y3

= 343x3 + 1176x2 y + 1344xy2 + 512y3

∴ (7x + 8y)3 = 343x3 + 1176x2 y + 1344xy2 + 512y3

(3) (7 + m)3

Let us simplify the expression, we get

(7 + m)3 = (7)3 + [ 3 × (7)2 × (m)] + [ 3 × (7) × (m)2 ] + (m)3

By using the formula,

(a + b)3 = a3 + 3a2 b + 3ab2 + b3

Here a = 7, b = m

Now, substitute the value we get

= 343 + (3 × 49)m + (3 × 7)m2 + m3

= 343 + 147m + 21m2 + m3

∴ (7 + m)3 = 343 + 147m + 21m2 + m3

(4) (52)3

Let us simplify the expression, we get

(52)3 = (50 + 2)3

(50 + 2)3 = (50)3 + [3 × (50)2 × (2)] + [ 3 × (50) × (2)2 ] + (2)3

By using the formula,

(a + b)3 = a3 + 3a2 b + 3ab2 + b3

Here a = 50, b = 2

Now, substitute the value we get

= 125000 + (3 × 2500 × 2) + (3 × 50 × 4) + 8

= 125000 + 15000 + 600 + 8

= 140608

∴ (52)3 = (50 + 2)3 = 140608

(5) (101)3

Let us simplify the expression, we get

(101)3 = (100 + 1)3

(100 + 1)3 = (100)3 + [ 3 ×(100)2 ×(1)] + [ 3 ×(100)×(1)2 ] +(1)3

By using the formula,

(a + b)3 = a3 + 3a2 b + 3ab2 + b3

Here a = 100, b = 1

Now, substitute the value we get

= 1000000 + (3 × 10000 × 1) + (3 × 100 × 1) + 1

= 1000000 + 30000 + 300 + 1

= 1030301

∴ (101)3 = (100 + 1)3 = 1030301

Maharashtra Board Solutions for Class 8 Maths Chapter 5 – image 6

Maharashtra Board Solutions for Class 8 Maths Chapter 5 – image 7

Maharashtra Board Solutions for Class 8 Maths Chapter 5 – image 8

Practice set 5.3 PAGE NO: 27

1. Expand:

Maharashtra Board Solutions for Class 8 Maths Chapter 5 – image 9

Solution:

(1) (2m – 5)3

Let us simplify the expression, we get

(2m – 5)3 = (2m)3 – [ 3 × (2m)2 × 5 ] + [ 3 × (2m) × (5)2 ] – (5)3

By using the formula,

(a – b)3 = a3 – 3a2 b + 3ab2 – b3

Here, a = 2m, b = -5

Now, substitute the value we get

= 8m3 – [3 × 4m2 × 5] + [ 3 × 2m × 25] – 125

= 8m3 – 60m2 + 150m – 125

∴ (2m – 5)3 = 8m3 – 60m2 + 150m – 125

(2) (4 – p)3

Let us simplify the expression, we get

(4 – p)3 = (4)3 – [ 3 × (4)2 × p ] + [ 3 × (4) × (p)2 ] – (p)3

By using the formula,

(a – b)3 = a3 – 3a2 b + 3ab2 – b3

Here, a = 4, b = -p

Now, substitute the value we get

= 64 – [3 × 6 × p ] + [ 3 × 4 × p2 ] – p3

= 64 – 48p + 12p2 – p3

∴ (4 – p)3 = 64 – 48p + 12p2 – p3

(3) (7x – 9y)3

Let us simplify the expression, we get

(7x – 9y)3 = (7x)3 – [ 3 × (7x)2 × 9y ] + [3 × (7x) × (9y)2 ] – (9y)3

By using the formula,

(a – b)3 = a3 – 3a2 b + 3ab2 – b3

Here, a = 7x, b = -9y

Now, substitute the value we get

= 343x3 – [3 × 49x2 × 9y] + [3 × 7x × 81y2 ] – 729y3

= 343x3 – 1323x2 y + 1701xy2 – 729y3

∴ (7x – 9y)3 = 343x3 – 1323x2 y + 1701xy2 – 729y3

(4) (58)3

Let us simplify the expression, we get

(58)3 = (60 – 2)3

(60 – 2)3 = (60)3 – [3 × (60)2 × 2] + [3 × (60) × (2)2 ] – (2)3

By using the formula,

(a – b)3 = a3 – 3a2 b + 3ab2 – b3

Here, a = 60, b = -2

Now, substitute the value we get

= 216000 – [3 × 3600 × 2] + [3 × 60 × 4] – 8

= 216000 – 21600 + 720 – 8

= 195112

∴ (58)3 = (60 – 2)3 = 195112

(5) (198)3

Let us simplify the expression, we get

(198)3 = (200 – 2)3

(200 – 2)3 = (200)3 – [3 × (200)2 × 2] + [3 × (200) × (2)2 ] – (2)3

By using the formula,

(a – b)3 = a3 – 3a2 b + 3ab2 – b3

Here, a = 200, b = -2

Now, substitute the value we get

= 8000000 – 240000 + 2400 – 8

= 7762392

∴ (198)3 = (200 – 2)3 = 7762392

Maharashtra Board Solutions for Class 8 Maths Chapter 5 – image 10

Maharashtra Board Solutions for Class 8 Maths Chapter 5 – image 11

Maharashtra Board Solutions for Class 8 Maths Chapter 5 – image 12

2. Simplify:

(1) (2a + b)3 – (2a – b)3

(2) (3r – 2k)3 + (3r + 2k)3

(3) (4a – 3)3 – (4a + 3)3

(4) (5x – 7y)3 + (5x + 7y)3

Solution:

(1) (2a + b)3 – (2a – b)3

Let us expand the given expression:

(2a + b)3 –(2a – b)3 = [(2a)3 +{3 ×(2a)2 × b } + {3 ×(2a)×(b)2 } +(b)3 ] –[(2a)3 -{3 × (2a)2 × b } +{3 ×(2a)×(b)2 } -(b)3 ]

By using the formula,

(a + b)3 = a3 + 3a2 b + 3ab2 + b3 and (a – b)3 = a3 – 3a2 b + 3ab2 – b3

= [8a3 + {3 × 4a2 × b} + {3 × 2a ×b} + b3 ] – [8a3 – {3 × 4a2 × b} + {3 × 2a × b2 } – b3 ]

= [8a3 + 12a2 b + 6ab2 + b3 ] – [8a3 – 12a2 b + 6ab2 – b3 ]

= 8a3 + 12a2 b + 6ab2 + b3 – 8a3 + 12a2 b – 6ab2 + b3

= 24a2 b + 2b3

∴ (2a + b)3 – (2a – b)3 = 24a2 b + 2b3

(2) (3r – 2k)3 + (3r + 2k)3

Let us expand the given expression:

(3r – 2k)3 + (3r + 2k)3 = [(3r)3 -{3 ×(3r)2 ×(2k)} + {3 ×(3r)×(2k)2 } -(2k)3 ] + [(3r)3 +{3 × (3r)2 ×(2k)} + {3 ×(3r)×(2k)2 } +(2k)3 ]

By using the formula,

(a + b)3 = a3 + 3a2 b + 3ab2 + b3 and (a – b)3 = a3 – 3a2 b + 3ab2 – b3

= [27r3 – {3 × 9r2 × 2k} + {3 × 3r × 4k2 } – 8k3 ] + [27r3 + {3 × 9r2 × 2k} + {3 × 3r ×(4k2 )} + 8k3 ]

= [27r3 – 54r2 k + 36rk2 – 8k3 ] + [27r3 + 54r2 k + 36rk2 + 8k3 ]

= 27r3 –54r2 k + 36rk2 – 8k3 + 27r3 + 54r2 k + 36rk2 + 8k3

= 54r3 + 72rk2

∴ (3r – 2k)3 + (3r + 2k)3 = 54r3 + 72rk2

(3) (4a – 3)3 – (4a + 3)3

Let us expand the given expression:

(4a – 3)3 – (4a + 3)3 = [(4a)3 –{3 ×(4a)2 × 3 } + {3 ×(4a)×(3)2 } –(3)3 ] –[(4a)3 +{3 × (4a)2 × 3} + {3 ×(4a)×(3)2 } + (3)3 ]

By using the formula,

(a + b)3 = a3 + 3a2 b + 3ab2 + b3 and (a – b)3 = a3 – 3a2 b + 3ab2 – b3

= [64a3 –{3 × 16a2 × 3} + {3 × 4a × 9} –27] – [64a3 + {3 × 16a2 × 3} + {3 × 4a × 9} + 27]

= [64a3 –144a2 + 108a –27] – [64a3 + 144a2 + 108a + 27]

= 64a3 –144a2 + 108a – 27 – 64a3 –144a2 –108a –27

= –288a2 – 54

∴ (4a – 3)3 – (4a + 3)3 = -288a2 – 54

(4) (5x – 7y)3 + (5x + 7y)3

Let us expand the given expression:

(5x – 7y)3 + (5x + 7y)3 = [(5x)3 -{3 ×(5x)2 × (7y)} +{3 ×(5x)×(7y)2 } -(7y)3 ] + [(5x)3 +{3 ×(5x)2 ×(7y)} +{3 ×(5x)×(7y)2 } + (7y)3 ]

By using the formula,

(a + b)3 = a3 + 3a2 b + 3ab2 + b3 and (a – b)3 = a3 – 3a2 b + 3ab2 – b3

= [125x3 – {3 × 25x2 × 7y} + {3 × 5x × 49y2 } – 343y3 ] + [125x3 + {3 × 25x2 × 7y} + {3 × 5x × 49y2 } + 343y3 ]

= [125x3 – 525x2 y + 735xy2 – 343y3 ] + [125x3 + 525x2 y + 735xy2 + 343y3 ]

= 125x3 – 525x2 y + 735xy2 – 343y3 + 125x3 + 525x2 y + 735xy2 + 343y3

= 250x3 + 1470xy2

∴ (5x – 7y)3 + (5x + 7y)3 = 250x3 + 1470xy2

Practice set 5.4 PAGE NO: 28

1. Expand:

(1) (2p + q + 5)2

(2) (m + 2n + 3r)2

(3) (3x + 4y – 5p)2

(4) (7m – 3n – 4k)2

Solution:

(1) (2p + q + 5)2

Let us expand the given expression:

(2p + q + 5)2 = (2p)2 +(q)2 +(5)2 + [ 2 ×(2p)×(q)] + [ 2 ×(q)×(5)] + [ 2 ×(2p)×(5)]

By using the formula,

(a + b +c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ac

Here, a = 2p, b = q, c = 5

Now, substitute the value we get

= 4p2 + q2 + 25 + [4pq] + [10q] + [20p]

= 4p2 + q2 + 25 + 4pq + 10q + 20p

∴ (2p + q + 5)2 = 4p2 + q2 + 25 + 4pq + 10q + 20p

(2) (m + 2n + 3r)2

Let us expand the given expression:

(m + 2n + 3r)2 = (m)2 +(2n)2 +(3r)2 + [2 ×(m)× (2n)] + [2 ×(2n)×(3r)] + [2 ×(m)×(3r)]

By using the formula,

(a + b +c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ac

Here, a = m, b = 2n, c = 3r

Now, substitute the value we get

= m2 + 4n2 + 9r2 + [4mn] + [12nr] + [6mr]

= m2 + 4n2 + 9r2 + 4mn + 12nr + 6mr

∴ (m + 2n + 3r)2 = m2 + 4n2 + 9r2 + 4mn + 12nr + 6mr

(3) (3x + 4y – 5p)2

Let us expand the given expression:

(3x + 4y – 5p)2 = (3x)2 +(4y)2 +(-5p)2 + [2 ×(3x) ×(4y)] + [2 ×(4y)×(- 5p)] + [2 ×(3x)×(-5p)]

By using the formula,

(a + b +c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ac

Here, a = 3x, b = 4y, c = 5p

Now, substitute the value we get

= 9x2 + 16y2 + 25p2 + [24xy] + [– 40yp] + [– 30xp]

= 9x2 + 16y2 + 25p2 + 24xy – 40yp – 30xp

∴ (3x + 4y – 5p)2 = 9x2 + 16y2 + 25p2 + 24xy – 40yp – 30xp

(4) (7m – 3n – 4k)2

Let us expand the given expression:

(7m – 3n – 4k)2 = (7m)2 +(- 3n)2 +(- 4k)2 + [2 ×(7m)×(-3n)] + [2 ×(-3n)×(-4k)] + [2 × (7m)×(-4k)]

By using the formula,

(a + b +c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ac

Here, a = 7m, b = -3n, c = -4k

Now, substitute the value we get

= 49m2 + 9n2 + 16k2 + [– 42mn] + [24nk] + [– 56mk]

= 49m2 + 9n2 + 16k2 – 42mn + 24nk – 56mk

∴ (7m – 3n – 4k)2 = 49m2 + 9n2 + 16k2 – 42mn + 24nk – 56mk

2. Simplify:

(1) (x – 2y + 3)2 + (x + 2y – 3)2

(2) (3k – 4r – 2m)2 –(3k + 4r – 2m)2

(3) (7a – 6b + 5c)2 + (7a + 6b – 5c)2

Solution:

(1) (x – 2y + 3)2 + (x + 2y – 3)2

Let us expand the given expression:

(x – 2y + 3)2 + (x + 2y – 3)2 = [(x)2 +(-2y)2 + (3)2 +{2 ×(x)×(- 2y)} +{2 ×(- 2y)× (3)} + {2 ×(x)×(3)}] + [(x)2 + (2y)2 + (-3)2 + {2×(x)×(2y)} +{2×(2y)×(- 3)} +{2 ×(x)×(-3)}]

By using the formula,

(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ac

= [x2 + 4y2 + 9 + {– 4xy} + {– 12y} + {6x}] + [x2 + 4y2 + 9 + {4xy} + {– 12y} + {– 6x}]

= [x2 + 4y2 + 9 – 4xy – 12y + 6x] + [x2 + 4y2 + 9 + 4xy – 12y – 6x]

= x2 + 4y2 + 9 – 4xy – 12y + 6x + x2 + 4y2 + 9 + 4xy – 12y – 6x

= 2x2 + 8y2 + 18 – 24y

∴ (x – 2y + 3)2 + (x + 2y – 3)2 = 2x2 + 8y2 + 18 – 24y

(2) (3k – 4r – 2m)2 –(3k + 4r – 2m)2

Let us expand the given expression:

(3k – 4r – 2m)2 –(3k + 4r – 2m)2 = [(3k)2 +(- 4r)2 + (- 2m)2 +{2 ×(3k)×(- 4r)} + {2 ×(- 4r)× (-2m)} +{2 ×(3k)×(- 2m)}] –[(3k)2 + (4r)2 +(- 2m)2 +{2 ×(3k)×(4r)} +{2 × (4r)×(- 2m)} +{2 ×(3k)×(-2m)}]

By using the formula,

(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ac

= [9k2 + 16r2 + 4m2 + {– 24kr} + {16rm} + {– 12km}] –[9k2 + 16r2 + 4m2 + {24kr} + {– 16rm} + {– 12km}]

= [9k2 + 16r2 + 4m2 – 24kr + 16rm – 12km] –[9k2 + 16r2 + 4m2 + 24kr – 16rm – 12km]

= 9k2 + 16r2 + 4m2 – 24kr + 16rm – 12km – 9k2 – 16r2 – 4m2 – 24kr + 16rm + 12km

= –48kr + 32rm

= 32rm – 48kr

∴ (3k – 4r – 2m)2 –(3k + 4r – 2m)2 = 32rm – 48kr

(3) (7a – 6b + 5c)2 + (7a + 6b – 5c)2

Let us expand the given expression:

(7a – 6b + 5c)2 +(7a + 6b – 5c)2 = [(7a)2 +(- 6b)2 +(5c)2 + {2 ×(7a)×(- 6b)} + {2 ×(- 6b)× (5c)} +{2 ×(7a)×(5c)}] + [(7a)2 +(6b)2 +(- 5c)2 +{2 ×(7a)×(6b)} + {2 ×(6b)× (- 5c)} +{2 ×(7a)×(-5c)}]

By using the formula,

(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ac

= [49a2 + 36b2 + 25c2 + {– 84ab} + {– 60bc} + {70ac}] + [49a2 + 36b2 + 25c2 + {84ab} + {- 60bc} + {– 70ac}]

= [49a2 + 36b2 + 25c2 – 84ab – 60bc + 70ac] + [49a2 + 36b2 + 25c2 + 84ab – 60bc – 70ac]

= 49a2 + 36b2 + 25c2 – 84ab – 60bc + 70ac + 49a2 + 36b2 + 25c2 + 84ab – 60bc – 70ac

= 98a2 + 72b2 + 50c2 – 120bc

∴ (7a – 6b + 5c)2 + (7a + 6b – 5c)2 = 98a2 + 72b2 + 50c2 – 120bc

Our experts have simplified the difficult problems into simpler steps, which can be easily solved by students. These solutions will help you in obtaining knowledge and strong command over the subject. As the Chapter is about Expansion Formulae, regular revision of important concepts and formulas over time is the best way to strengthen your concepts.

Many such exercise problems are given in the MSBSHSE Solutions book, students can refer to them to yield good results in the examination.

Home Revise
Reach Us

7th floor,Odyssey IT Park, Road Number- 9, Near Old Passport Office, Wagale Estate,
Thane (W) – 400604

Contact Us

telephone +91 80809 72972

mail support@homerevise.co.in

CBSE Board
  • 12 CBSE Board
  • 11 CBSE Board
  • 10 CBSE Board
  • 09 CBSE Board
  • 08 CBSE Board
  • 07 CBSE Board
  • 06 CBSE Board
  • 05 CBSE Board
  • 04 CBSE Board
  • 03 CBSE Board
  • 02 CBSE Board
  • 01 CBSE Board
ICSE Board
  • 10 ICSE Board
  • 09 ICSE Board
Maharashtra Board
Science
  • 12 Science Maharashtra Board
  • 11 Science Maharashtra Board
Commerce
  • 12 Commerce Maharashtra Board
  • 11 Commerce Maharashtra Board
  • 10 Maharashtra Board
  • 09 Maharashtra Board
  • 08 Maharashtra Board
  • 07 Maharashtra Board
  • 06 Maharashtra Board
  • 05 Maharashtra Board
  • 04 Maharashtra Board
  • 03 Maharashtra Board
  • 02 Maharashtra Board
  • 01 Maharashtra Board
Submit Form
  • Home Revise
  • twitter
  • youtube
  • instagram
© 2021 – All Rights Reserved. Home Revise