

STD: 12th SCIENCE

TOPIC: 3,5

MARKS: 30

SUBJECT: MATHS 1 DATE:

Section A

MCQ

(02)

- 1. If L and M are the mid-points of sides BC and CD of parallelogram ABCD, then $\overline{AL} + \overline{AM} =$

- (A) $\frac{1}{2}\overline{AC}$ (B) $\frac{3}{2}\overline{AC}$ (C) \overline{AC} (D) $\frac{2}{3}\overline{AC}$. \overline{BD}
- In $\triangle ABC$, if a=2, $\angle B=60^{\circ}$ and $\angle C=75^{\circ}$ then b=
 - (A) $\sqrt{3}$
- (B) $\sqrt{6}$ (C) $\sqrt{9}$
- (d) $1+\sqrt{2}$

Section B

Solve the following.

(08)

- 3. Find the principal solutions of $\cot x = \sqrt{3}$
- 4. In $\triangle ABC$ prove that a(b cosC c cos B) = $b^2 c^2$
- 5. If the vectors $-3\hat{\imath} + 4\hat{\jmath} 2\hat{k}$, $\hat{\imath} + 2\hat{k}$, $\hat{\imath} p\hat{\jmath}$ are coplanar, then find value of p.
- 6. If \bar{a} , \bar{b} , \bar{c} are the position vectors of the points A, B, C respectively and $5\bar{a} - 3\bar{b} - 2\bar{c} = 0$, then find the ratio in which C divides the line segment BA.

OR

Find the volume of tetrahedron whose coterminous edges are $7\hat{i} + \hat{k}$, $2\hat{i} + 5\hat{i} - 3\hat{k}$ and $4\hat{i} + 3\hat{i} + \hat{k}$.

Section C

Solve the following.

(12)

- 7. Find the general solution of $sec^2 2x = 1 tan 2x$
- 8. With usual notations prove that $2\left\{a.sin^2\frac{c}{2} + c.sin^2\frac{A}{2}\right\} = a + a$ c - b

OR

In $\triangle ABC$, if $\sin^2 A + \sin^2 B = \sin^2 C$, then show that the triangle is a right angled triangle.

- 9. If $\bar{a} = \hat{i} + 5\hat{k}$, $\bar{b} = 2\hat{i} + 3\hat{k}$, $\bar{c} = 4\hat{i} \hat{j} + 2\hat{k}$ and $\bar{d} = \hat{i} \hat{j}$, find $(\bar{c} - \bar{a}) \cdot (\bar{b} \times \bar{d}).$
- 10. Express $-\hat{i} 3\hat{j} + 4\hat{k}$ as a linear combination of the vectors $2\hat{i} + \hat{j} - 4\hat{k}$, $2\hat{i} - \hat{j} + 3\hat{k}$ and $3\hat{i} + \hat{j} - 2\hat{k}$.

Section D

Solve the following.

(08)

11. In any $\triangle ABC$ prove that $b^2 = a^2 + c^2 - 2ac$ COSB

- $\cos^{-1}\frac{12}{13} + \sin^{-1}\frac{3}{5} = \sin^{-1}\frac{56}{65}$ 11.
- 12. If A, B, C, D are four non-collinear points in a plane such that $\overline{AD} + \overline{BD} + \overline{CD} = \overline{0}$, then prove that point D is the centroid of the $\triangle ABC$.

OR

By vector method prove that the medians of a triangle are concurrent.